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compensates for the electron repulsion of even directly bonded 
carbanion centers. Thus, dicarbanions can be generated with 
surprising ease when they are stabilized within an ion triplet of 
this type. 

In the ion triplets from the indenofluorenes one cesium cation 
is expected to be close to one 9-fluorenyl-type position, and the 
other cesium cation is expected to be on the opposite side of the 
molecular ring plane close to the other 9-fluorenyl-type position 
(Figure 3). In such a structure, each cation is close to one anion 
center but relatively far from the other. The electrostatic sta
bilization within the ion triplet is therefore reduced and the second 
pfCs are larger. The difference in pÂ csCHA between 3b and 4b 
is probably associated with their relationship to the m- and p-
xylene dianions, respectively. In the meta system the carbanion 
electrons are placed in two nonbonded Hiickel MO's; accordingly, 
m-xylene is dimetalated more readily than /vxylene.6 

These principles based on Figure 1 should be applicable gen
erally and undoubtedly rationalize the facile formation of many 
polylithiated organic compounds; that is, such compounds may 
be simply envisaged as ion multiplets.7 Moreover, this view also 
explains the many examples where a second metalation occurs 
close to the first.8 
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The thermodynamic relationships between the II and IV oxi
dation states (eq 1, Y = S, Se) play a dominant role in determining 
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chemical behavior of sulfoxides, sulfinic, and sulfenic acids and 
esters, as well as their selenium analogues. It can be argued on 
the basis of bond strengths that the equilibrium of eq 1 should 
be more to the right for selenium than for sulfur, and this is 
supported by some experimental evidence.2 

We report here the results of a study aimed at quantifying the 
equilibrium of eq 1, using the system shown in eq 2. Since for 
Y = Se only the selenenate isomer was detectable at equilibrium 
it was necessary to employ a kinetic technique (measurement of 
both /C12^ and A:2,

Se to determine the thermodynamic relationship 
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Figure 1. Free energy diagrams for the equilibration of (a) selenoxide 
1-Se and selenenate 2-Se at -80 0C; (b) sulfoxide 1-S and sulfenate 2-S 
at -30 0C. 
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between the isomers. The rate constants kl2
St could be directly 

measured. o-Nitrophenyl prenyl selenide was oxidized to the 
selenoxide 1-Se (w-CPBA, -85 0C), which could be briefly ob
served at -80 0C by 270-MHz NMR, and the rate was measured 
(Z12 s» 6 min, fc12

Se = 0.002 s"1) for its isomerization to 2-Se. 
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The rate constant for the reverse process was estimated from 
the cis-trans isomerization (k2c2t

Se) measured between 51 and 80 
0C of the deuterium-labeled selenenate 2e-Se (Scheme I).3 

Unfortunately this is not a direct measure of k2l
Se. To achieve 

cis-trans isomerization, 2c-Se must proceed to 1-Se by the exo 
transition state and return endo, or vice versa.5 Simply proceeding 
to 1-Se and returning via the lowest pathway6 results in no de-

(3) Prepared from ciV2-methyl-3-buten-2-ol-3,4-rf2 (from 2-methyl-3-bu-
tyn-2-ol reduction with LiAlD4 followed by D2O quench)43 and o-nitro-
benzeneselenenyl chloride.4b The 3-deuterio substituent is omitted in Scheme 
I. 
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O.; Seibert, H. Chem. Ber. 1933, 66, 708. 
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tectable change. It can be shown that the observed and [2,3] 
sigmatropic rate constants are related as follows, provided that 
AN » kx:

6 Ic202^ « 2A2x^ and A,^ « k^. Using the directly 
measured value for A12

Se and the value for A2X
Se obtained by 

extrapolating Â 2,*= to -80 0C (AH* = 24.9 kcal/mol, AS* = -7.0 
eu), it is possible to construct a partial free-energy diagram for 
the l-Se/2-Se equilibration (Figure la). The free-energy dif
ference of interest separating selenoxide and selenenate is 12.5 
- AAG*N/x kcal/mol, where AAG*N//X is the separation between 
the endo and exo transition states (i.e. AN/ ZCX). 

Since AN/AX cannot be directly measured for Y = Se, we 
decided to provide a partial answer by studying the sulfur analogue 
for which K^ is directly measureable. The sulfenate ester 2-S 
was prepared from 2-methyl-3-buten-2-ol and o-nitrobenzene-
sulfenyl chloride at -50 0C, and the rate of equilibration (A12

s 

+ A21
s) with sulfoxide 1-S was measured at -29.7 0C (A12

s + A21
s 

= 0.000216 s_1, K^ = 23.9). When the deuterium-labeled com
pound 2c-S7,9 was used, only a single diastereomer6 of 1-S was 
formed (>98%). Equilibration (fc]a]b

s) occurred at higher tem
peratures, and the rate was extrapolated to -29.7 0C (AH* = 21.7 
kcal/mol, AS" = -1.6 eu). From the three experimentally de
termined numbers k2l

s, Alalb
s, and K^, it was possible to calculate 

the [2,3] sigmatropic rate constants and construct the free-energy 
diagram (Figure lb). 

The most striking finding is the high value (275) of AN
S/AX

S,6 

corresponding to a AAGN/X* of 2.7 kcal/mol. The AN/AX value 
represents the maximum possible asymmetry transfer from chiral 
sulfur to chiral carbon (if there is one) of the sulfenate. That such 
high values have been rarely achieved by using optically active 
sulfoxides for the synthesis of chiral allyl alcohols5 could be due 
in part to the inefficient cleavage of allyl sulfenates, but more likely 
reflect some peculiarityof the present system.5bao 

Returning now to the original question of the selenenate-sel-
enoxide equilibration we can esimate AAGNyX* = 2 kcal/mol, and 
thus AG0I8̂ 2Se ** 11 kcal/mol. Because of the long temperature 
extrapolation involved, we estimate a possible error of ±2.5 
kcal/mol. Since AG°1S/2S = -1.5 kcal/mol, the equilibrium of 
eq 2 shifts by 12 kcal/mol on going from S to Se. The two 
principal contributors are the weaker C-Se bond strength com
pared to C-S and the smaller degree of multiple bonding in the 
dipolar Se-O vs. S-O bond. Some of the more dramatic dif
ferences between S and Se chemistry can be traced to the effect 
discussed here, (e.g., the fact that selenoxide syn eliminations are 
irreversible and much more rapid than those of sulfoxides"). 

The isomerization of selenoxide to selenenate can be facile even 
in situations where the double bond is part of an aromatic ring 
such as furan or phenanthrene. Even though the selenoxide 3 is 
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the only species detected by NMR,12 it is in rapid equilibrium 
with its selenenate isomer 4 since treatment with pyrrolidine gives 
alcohol 5 in a crude (NMR) yield of 87%.13 Purification by 
distillation is usually accompanied by some isomerization to 
furfuryl alcohol, as well as reversal to selenoxide 3. 9-
Phenanthrenylmethyl phenyl selenoxide can similarly be converted 
to 9-methylene-10-hydroxy-9,10-dihydrophenanthrene. 
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Anaerobic reduction of daunomycin (1) in microsomes by 
NADPH2'3 and in solution by dithionite gives 7-deoxydaunomy-
cinone (2).4 In vivo reductive elimination has been proposed to 
occur from the semiquinone (3) by some5"7 and from the hy
droquinone (4) by others7,8 and to be at least in part responsible 
for covalent binding of the drug to DNA.6"8 

Earlier we reported the efficient reduction of daunomycin to 
7-deoxydaunomycinone by 6 and kinetic evidence that the re
duction occurred possibly via hydride transfer.9 The kinetic 
measurements presumed no long-lived intermediates as suggested 
by prior electrochemical studies.10 This presumption has now 
been found to be inaccurate. Kinetics and spectroscopy establish 
that the reducing agent is 7" and reveal the elusive tautomer 5 
of 7-deoxydaunomycinone. 

A rigorously oxygen-degassed, methanol-rf solution containing 
1.79 X 10"4 M 1, 1.79 X 10"3 M 6, and 2.0 X 10"3 M trisma buffer 
(1:1 Tris/Tris-HCl) at 25.0 ± 0.1 0C gave the spectral changes 
shown in Figure 1 during the time regime 10-130 s with scans 
every 10 s. The sequence of events was a fall in the absorption 
at 480 nm coupled with a short rise at 420 nm followed by a 
substantial rise at 380 and 608 nm. During the 380- and 608-nm 
band rise, the 420-nm band disappeared. Scans beyond 130 s 
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